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Abstract

The vibrational characteristics of Langevin–type torsional transducers, which consist of two piezoelectric
torsional disks and two elastic blocks, are studied theoretically and experimentally in this paper. The
differential equations of piezoelectric torsional motions are derived in terms of the circumferential
displacement and the electric potential. Solutions of the boundary-value problem yield the natural
frequencies and mode shapes of the transducers, and the natural frequencies are verified by comparing the
numerical results with the experimental ones. The theoretical results enable one to quantitatively predict the
effect of the elastic blocks on the reduction of the natural frequencies of a Langevin-type torsional
transducer.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Piezoelectric transducers convert electric signals into mechanical vibrations and vice versa [1,2].
A bolt-clamped Langevin-type transducer, referred to as BLT hereafter, is one of the piezoelectric
transducers. A BLT consists of piezoelectric disks and two elastic blocks clamped at each end as
shown in Fig. 1, and efficiently generates mechanical vibrations of desired frequencies [3]. A BLT
plays the role of an actuator in several applications. Most of them use longitudinal vibrations in
the thickness direction of piezoelectric disks. In contrast, this paper is concerned with the
transducers generating torsional vibrations in an elastic rod, which is supposed to work as a
viscosity sensor [4,5].

The torsional transducers must be more complicated to make than longitudinal transducers. It
was suggested to make a torsional transducer disk either by assembling several pieces of polarized
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cubes [6] or by alternately polarizing the even number of sectors of a disk and covering it with
alternate electrodes [7]. Another scheme, suggested earlier [8], is to circumferentially polarize a
disk. This means appears to be more convenient to execute and more reliable. The torsional disks
considered in this paper have been fabricated by following this scheme.

The piezoelectric torsional disks composing the BLT shown in Fig. 1 have been fabricated
according to the process illustrated in Fig. 2. (a) A disk molded with ceramic powder is divided
into an even number (16 in this paper) of sectors, and the alternate sectors are painted with silver
electrodes (shadowed area in the figure). (b) A couple of adjacent electrodes are driven by electric
voltage, and one area is polarized in the circumferential direction. (c) Polarizing is continued in
the remaining areas of the disk. (d) The divided electrodes are removed after polarization. (e)
Other electrodes are painted on the top and bottom surfaces of the disk. (f) The electrodes are
connected to a driving circuit.

The torsional disks are usually of high-frequency resonance, and they are assembled with two
elastic blocks to lower the resonance frequency. The disks and blocks are clamped together with a
bolt. This kind of transducer is called a torsional BLT, and Fig. 1 shows its typical shape. A study
on the similar type torsional transducer was reported before [9], but it suggested a theoretical
approach without verifying the result and showed a derivation of the electromechanical equivalent
circuit.

This paper deals with a theoretical and experimental study on the vibration characteristics of
the piezoelectric torsional disks and torsional BLTs. The differential equations and boundary
conditions of piezoelectric torsional motion are formulated in terms of the circumferential
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Fig. 1. Langevin-type transducer, consisting of two piezoelectric disks and two elastic blocks: (a) photo, (b) schematic

diagram.
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displacement and the electric potential. For the torsional disks and then for the torsional BLTs,
the boundary-value problems are solved to yield the natural frequencies and mode shapes. The
theoretical solutions are then compared with experimental observations in the sense of the natural
frequency.

2. Formulation of the electromechanical problem

The electromechanical relations were well formulated for the longitudinal vibrations in the
thickness direction of a piezoelectric disk [10]. Torsional vibrations in a cylindrical piezoelectric
material can also be described in terms of the circumferential displacement u(r, z, t) and
electric potential fðr; z; tÞ: The shear stress tzy in the circumferential direction and the electric
displacement D on a circular (or an annular) cross-section have the constitutive relations with the
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Fig. 2. Fabrication process of a piezoelectric torsional disk. (a) painting silver electrodes, (b) polarizing one area, (c)

polarizing other areas, (d) erasing the electrodes, (e) painting silver electrodes, (f ) connecting circuits.
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shear strain ð@u=@zÞ and the electric field ð�@f=@zÞ as follows:

tzy ¼ G
@u

@z
þ e

@f
@z

; ð1Þ

D ¼ e
@u

@z
� z

@f
@z

; ð2Þ

where G is the shear modulus, e is the piezoelectric stress constant, and z is the permittivity.
The equation of motion derived from the force equilibrium is

@tzy

@z
¼ r

@2u

@t2
ð3Þ

and the electrostatic equation is

@D

@z
¼ 0; ð4Þ

where r is the mass density. Inserting Eqs. (1) and (2) into Eqs. (3) and (4) yields the following
governing equations:

@2u

@z2
¼

1

c2

@2u

@t2
; ð5Þ

@2f
@z2

¼
e
z
@2u

@z2
; ð6Þ

where cð¼ ½ #G=r�1=2Þ in the wave Eq. (5) is the propagation speed of the torsional wave, and
#Gð¼ G þ e2=zÞ is the modified shear modulus including the piezoelectric phenomenon.

When the voltage applied to the electrodes is a harmonic function of time t with frequency o,
the displacement u and the electric potential f are regarded as harmonic functions of time with the
same frequency. Moreover, Eqs. (5) and (6) are independent of the radial co-ordinate r. Therefore,
uðr; z; tÞ and fðr; z; tÞ can be expressed through the separation of variables as seen in the following:

uðr; z; tÞ ¼ *uðzÞRðrÞejot; ð7Þ

fðr; z; tÞ ¼ *fðzÞRðrÞejot: ð8Þ

Here RðrÞ is an arbitrary function of the radial co-ordinate r, but it is linearly proportional to r in
the fundamental mode. Substituting Eqs. (7) and (8) into Eqs. (5) and (6) provides the following
governing equations in terms of *uðzÞ and *fðzÞ:

d2 *u

dz2
þ k2 *u ¼ 0; ð9Þ

d2 *f
dz2

¼
e
z

d2 *u

dz2
; ð10Þ

where kð¼ o=cÞ is the wavenumber.
The solution of the Helmholtz equation (9) has the following form:

*uðzÞ ¼ A cos kz þ B sin kz: ð11Þ

ARTICLE IN PRESS

J.O. Kim, O.S. Kwon / Journal of Sound and Vibration 264 (2003) 453–473456



After inserting Eq. (11) into Eq. (10), the solution of *fðzÞ is obtained as follows:

*fðzÞ ¼
e
z

A cos kz þ B sin kzð Þ þ az þ b: ð12Þ

The unknown constants A, B, a, and b are determined according to the boundary conditions.
In addition, the electric displacement Dðr; z; tÞ is also expressed through the separation of

variables seen in the following:

Dðr; z; tÞ ¼ *DðzÞRðrÞejot: ð13Þ

Inserting Eqs. (7), (8), and (13) into Eq. (2) and rearranging the equation yields the following:

*DðzÞ ¼ e
d *u

dz
� z

d *f
dz

: ð14Þ

Substituting Eqs. (11) and (12) into Eq. (14) simplifies the equation as follows:

*D ¼ �za ¼ constant: ð15Þ

Eq. (15) means that the electric displacement Dðr; z; tÞ is uniform along the thickness direction of
the disk.

3. Vibration of single-disk transducers

Since a BLT consists of piezoelectric disks and elastic blocks as shown in Fig. 1, it is needed to
first clarify the vibration characteristics of the disks. The unknown constants in solutions (11) and
(12) can be determined by applying mechanical and electrical boundary conditions.

3.1. Analysis

A schematic diagram of a torsional transducer of a single disk is shown in Fig. 3. The
piezoelectric transducer has the thickness l and is driven by the electric voltage V0e jot applied to
its side surfaces.

For the transducer fixed at one side ðz ¼ 0Þ and free at the other side ðz ¼ lÞ; the boundary
conditions are the following:

*u ¼ 0 and *f ¼ 0 at z ¼ 0; ð16a;bÞ

*t ¼ 0 and *f ¼ V0 at z ¼ l: ð16c;dÞ
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Fig. 3. Schematic diagram of a single-disk transducer.
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After using the shear stress tzyð¼ *tðzÞRðrÞejotÞ expressed in Eq. (1) and the boundary conditions
(16), the unknown constants of Eqs. (11) and (12) are determined and the solutions of Eqs. (5) and
(6) are obtained in the following manner:

*uðzÞ ¼
eV0

D1
sin kz; ð17Þ

*fðzÞ ¼
V0

D1

e2

z
sin kz � ð #Gk cos kl Þz

� �
; ð18Þ

*D ¼
zV0

D1

#Gk cos kl; ð19Þ

where

D1 �
e2

z
sin kl � #Gkl cos kl ¼ 0 ð20Þ

is the characteristic equation representing the resonance of the single–disk torsional transducer
fixed at one side and free at the other. Here, e2= #Gz is the square of electromechanical coupling
coefficient (EMCC) [9].

For the transducer free at both sides, the boundary conditions are established as the following:

*t ¼ 0 and *f ¼ 0 at z ¼ 0; ð21a;bÞ

*t ¼ 0 and *f ¼ V0 at z ¼ l: ð21c;dÞ

Applying the boundary conditions (21) yields the following solutions:

*uðzÞ ¼
eV0

D2
½cos kz � cos k l � zð Þ�; ð22Þ

*fðzÞ ¼
V0

D2

e2

z
½cos kz � cos k l � zð Þ þ cos kl � 1� þ #Gk sin klz

� �
; ð23Þ

*D ¼ �
zV0

D2

#G k sin kl; ð24Þ

where

D2 � #Gkl sin kl � 2
e2

z
1 � cos klð Þ ¼ 0 1 � cos kla0ð Þ ð25Þ

is the characteristic equation representing the resonance of the single–disk torsional transducer
free at both side surfaces. If cos kl ¼ 1; then *uðzÞ ¼ 0 and *fðzÞ ¼ 0; and the solutions are trivial.

3.2. Numerical results

The results of the analysis described in the previous section can be verified by calculating
natural frequencies and comparing them with experimental observations. The piezoelectric
material selected for the numerical calculation and experiment (in the next section) is PZT (EC65)
made by EDO Co. The material properties are summarized in Table 1, and they are similar to the

ARTICLE IN PRESS

J.O. Kim, O.S. Kwon / Journal of Sound and Vibration 264 (2003) 453–473458



values reported in other literature [11]. The EMCC value of this material is 0.69. The thickness of
this single–disk transducer is 4 mm.

The unknown variable k in Eqs. (20) and (25) can be calculated easily by using a root-finder
function (FindRoot) available in Mathematica [12]. A successful search necessitates a good initial
guess, which can be substituted by the elastic natural frequencies of a corresponding non-
piezoelectric disk. Once the wavenumber k is evaluated, the natural frequency f is obtained from
the following relation:

f ¼
kc

2p
: ð26Þ

For a transducer fixed at one side and free at the other side, the piezoelectric natural frequencies
are calculated from Eqs. (20) and (26). The piezoelectric wavenumber kp and the piezoelectric
natural frequency fp calculated for the first four modes are listed in Table 2. The wavenumbers in
Table 2 are non-dimensional values normalized by multiplying the thickness of the transducer.
The piezoelectric natural frequency calculated here will be compared with the measured one in the
next section.

The elastic wavenumber ke and the elastic natural frequency fe of the non-piezoelectric disk are
calculated to clarify the effect of the piezoelectric phenomenon on the natural frequency.
This calculation is carried out by setting e ¼ 0 and #G ¼ G in Eq. (20), and the results thus
obtained are also listed in Table 2. The difference of the piezoelectric wavenumber and the elastic
wavenumber kp � ke in Table 2 shows that the piezoelectric effect significantly reduces the
wavenumber for the fundamental mode and the effect becomes trivial for the higher modes. This
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Table 1

Electromechanical properties of a PZ T (EDO EC-65)

Electromechanical properties Values

Mass density, r 7500 kg/m3

Permittivity, z 8002	 10–12 C2/N m2

Piezoelectric strain constant, d15 584	 10–12 C/N

Elastic constant, sE
44 46.9	 10–12 m2/N

Piezoelectric stress constant, eð¼ d15=sE
44Þ 12.45 C/m2

Shear modulus, Gð¼ 1=sE
44Þ 21.3 GPa

Modified shear modulus, #Gð¼ G þ e2=zÞ 40.7 GPa

Table 2

Natural frequencies of a single-disk transducer with fixed–free boundary conditions

Mode Wavenumber	 thickness Natural frequency

Piezoelectric kpl Elastic kel kpl2kel Piezoelectric fp (kHz) Elastic fe (kHz) fp=fe

1 1.19 1.57 �0.38 110 105 1.05

2 4.61 4.71 �0.10 427 316 1.35

3 7.79 7.85 �0.06 722 527 1.37

4 10.95 11.00 �0.05 1015 737 1.38
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is the same trend as appeared in the piezoelectric longitudinal transducer vibrating in the
thickness direction [10]. The ratio of the corresponding natural frequencies fp=fe converge a

typical value,

ffiffiffiffiffiffiffiffiffiffi
#G=G

q
; for higher modes.

For the transducer free at both ends, the piezoelectric natural frequencies are calculated from
Eqs. (25) and (26). The calculated piezoelectric wavenumbers and corresponding natural
frequencies are listed in Table 3, and so are the elastic wavenumbers and corresponding natural
frequencies. In this case, the piezoelectric resonance does not appear in the symmetric modes
because of the constraint cos kla1: The antisymmetric modes show the same trend as observed in
Table 2.

The piezoelectric natural frequencies in Table 2 are a half of those frequencies in Table 3. This
relation is explained in terms of mode shapes. The mode shapes of the single-disk transducer with
fixed-free boundary conditions are calculated from Eq. (17) and displayed in Fig. 4. The mode
shapes of the transducers with free–free boundary conditions are calculated from Eq. (22) and
displayed in Fig. 5. In Figs. 4 and 5, the broken lines represent the mode shapes of the elastic
resonance without piezoelectric phenomenon and the solid lines represent the mode shapes of the
piezoelectric resonance.

It appears in Fig. 5 that the piezoelectric resonance of the free–free transducer does not have
symmetric modes but has antisymmetric modes. The half of the antisymmetric mode shapes
corresponds to the mode shapes in Fig. 4. Thus, the fixed–free transducer of half-thickness has the
same piezoelectric resonance of the free–free transducer. Since the frequencies in Tables 2 and 3
are those of the transducers with the same thickness, the piezoelectric natural frequencies of fixed–
free boundary conditions show twice the piezoelectric natural frequencies of free–free boundary
conditions.

It is interesting to investigate the influence of geometrical parameter on the natural frequencies
[13]. Fig. 6 shows the variation of the first natural frequency fp with the thickness l of the
piezoelectric disk calculated for fixed–free (broken line) and free–free (solid line) disks. It is obvious
from the figure that the natural frequency is inversely proportional to the thickness of the disk.

3.3. Experiments

In order to verify the calculated values of the piezoelectric natural frequencies, measurements
are carried out with the piezoelectric torsional transducers fabricated by the process illustrated in
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Table 3

Natural frequencies of a single-disk transducer with free–free boundary conditions

Mode Wavenumber	 thickness Natural frequency

Piezoelectric kpl Elastic kel kpl � kel Piezoelectric fp (kHz) Elastic fe (kHz) fp=fe

0 — 0 — — 0 —

1 2.38 3.14 �0.76 221 211 1.05

2 — 6.28 — — 421 —

3 9.22 9.42 �0.20 854 632 1.35

4 — 12.57 — — 843 —
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Fig. 4. Mode shapes of a single-disk transducer with fixed–free boundary conditions: (a) first, (b) second, and (c) third

mode.

Fig. 5. Mode shapes of a single-disk transducer with free–free boundary conditions: (a) first, (b) second, and (c) third

mode.
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Fig. 2. Fig. 7 shows the photograph of the transducer; (a) is the disk covered with sector electrodes
before polarization and (b) is the disk covered with whole electrodes after polarization.

The resonance frequency of the transducer is measured by using impedance gain/phase analyzer
(HP 4194A). The measured impedance displayed as a function of the frequency is shown in Fig. 8.
The locations of local minimum impedance in the curve of Fig. 8 represent the piezoelectric
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Fig. 6. Variation of the piezoelectric natural frequency fp with the thickness l of the piezoelectric disk for the boundary

conditions of fixed–free (broken line) and free–free (solid line).

Fig. 7. Piezoelectric torsional transducer disks in the fabrication process: (a) covered with sector electrodes before

polarization and (b) covered with whole electrodes after polarization.

J.O. Kim, O.S. Kwon / Journal of Sound and Vibration 264 (2003) 453–473462



natural frequencies. The measured piezoelectric natural frequencies are listed in Table 4 and
compared to the calculated ones. The calculated and measured values agree with each other.

4. Vibration of double-disk transducers

The analysis for the single-disk transducer described in the previous section is extended to the
case of the double-disk transducer which is the realistic part of the BLT considered in the next
section.

4.1. Analysis

The double-disk transducer consists of two piezoelectric torsional disks, 1 and 2 in Fig. 9, of the
thickness l and polarized in the opposite directions. The transducer is driven by the electric
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Fig. 8. Impedance curve of a single-disk transducer, measured as a function of the frequency.

Table 4

Comparison of the calculated and measured natural frequencies of a single-disk transducer with free–free boundary

conditions

Mode Natural frequency (kHz) Difference (%)

Calculated Measured

1 221 225 �1.8

2 854 805 6.1

3 1445 1380 4.7

4 2030 1940 4.6
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voltage V0e jot applied to the side surface of each disk. Thus, the driving voltage can be regarded
as the voltage V0e jot on the outer surface and voltage 0 on the inner surface. Mechanically, the
outer surfaces are free, and the boundary conditions are established as follows:

*u1 ¼ *u2; *t1 ¼ *t2; *f1 ¼ 0; *f2 ¼ 0; at z ¼ 0; ð27a;b; c;dÞ

*t1 ¼ 0; *f1 ¼ V0 at z ¼ l; ð27e; fÞ

*t2 ¼ 0; *f1 ¼ V0 at z ¼ �l; ð27g;hÞ

Subscripts 1 and 2 represent the corresponding piezoelectric disks. The governing equation (16) is
replaced by the following one for disk 2 because of the opposite direction of polarization:

d2 *f
dz2

¼ �
e
z

d2 *u

dz2
: ð28Þ

Applying the boundary conditions (27a–27 h) yields the following solutions:

*u1ðzÞ ¼
eV0

D1
sin kz; ð29Þ

*f1ðzÞ ¼
V0

D1

e2

z
sin kz � ð #Gk cos klÞz

� �
; ð30Þ

*D1 ¼
zV0

D1

#Gk cos kl; ð31Þ

*u2ðzÞ ¼
eV0

D1
sin kz; ð32Þ

*f2ðzÞ ¼ �
V0

D1

e2

z
sin kz � ð #Gk cos klÞz

� �
; ð33Þ

*D2 ¼
zV0

D1

#Gk cos kl: ð34Þ

It appears that the characteristic equation representing the resonance of the double–disk
transducer free at both outer surfaces is again Eq. (20), which is the characteristic equation for the
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Fig. 9. Schematic diagram of a double-disk transducer.
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single–disk transducer fixed at one side and free at the other. Therefore, the piezoelectric natural
frequencies of the symmetric double–disk transducer can also be calculated by the analysis for the
symmetric half.

4.2. Numerical results

Since the piezoelectric natural frequencies of the double–disk transducer are calculated with
Eq. (20), the numerical results listed in Table 2 are also valid and used as the frequency fp in
Table 5. These results are compared with those of the Langevin–type transducers in the next
section.

It is interesting to note that the natural modes of the double-disk transducer, Eqs. (28)–(33), are
the same equations (17)–(19) as those of the single–disk transducer with fixed–free boundary
conditions, and that the fixed–free transducer has the same piezoelectric resonance as the free–free
transducer of double thickness. In other words, the symmetric double-disk transducer can be
regarded as a single-disk transducer as if there is no interface between the two disks. The voltage
between two surfaces is regarded as 2V0e jot this consideration.

5. Vibration of the Langevin-type torsional transducers

The double-disk torsional transducers described in the previous section are assembled together
with two elastic blocks to form a torsional BLT as shown in Fig. 1. If two elastic blocks are the
same, the BLT is then regarded as a symmetric one. Otherwise, the BLT is asymmetric.

5.1. Analysis and numerical results for symmetric BLT’s

A symmetric BLT shown in Fig. 10(a) is a special case of the transducer shown in Fig. 1 in that
the elastic blocks A and B are identical. Piezoelectric torsional disks 1 and 2 of thickness l1 are
coupled and elastic blocks A and B of thickness l2 are assembled at each side. A full analysis with
the boundary conditions at two boundaries and three interfaces would be complicated. Thus,
based on the discussions in the previous section, the analysis is carried out for the symmetric half
shown in Fig. 10(b).
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Table 5

Natural frequencies of a double-disk transducer and a symmetric Langevin-type double-disk transducer, both with

free–free boundary conditions

Mode Piezoelectric natural frequency

Two-layer, fp (kHz) Langevin-type two-

layer, fL (kHz)

fL=fp

1 110 22.4 0.20

2 427 65.7 0.15

3 722 107 0.15

4 1015 148 0.15
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The symmetry face is regarded as a fixed one, and the boundary and interface conditions are
established as follows when the piezoelectric disk is driven by the voltage V0e jot:

*u1 ¼ 0 and *f1 ¼ 0 at z ¼ 0; ð35a;bÞ

*u1 ¼ *uA; *t1 ¼ *tA; and *f1 ¼ V0 at z ¼ l; ð35c;d; eÞ

*tA ¼ 0 at z ¼ l1 þ l2: ð35fÞ

The governing equations for the piezoelectric disk are the same as Eqs. (9) and (10). The equation
for the elastic blocks is the same as Eq. (9) with e ¼ 0:

Applying the boundary conditions (35a–35f ) yields the solutions for the symmetric torsional
BLT as follows:

*u1ðzÞ ¼
eV0

D3

cos k2l2

sin k1l1
sin k1z; ð36Þ

*f1ðzÞ ¼
1

D3

e2V0

z
cos k2l2

sin k1l1
sin k1z �

1

D3

e2V0

z
cos k2l2 þ

V0

l1

� �
z; ð37Þ

*D1 ¼
1

D3
e2V0 cos k2l2 þ

zV0

l1
; ð38Þ

*uAðzÞ ¼
eV0

D3
cos k2 l1 þ l2 � zð Þ; ð39Þ
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Fig. 10. Symmetric Langevin-type transducer: (a) photo, (b) schematic diagram of the symmetric half.
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where

D3 �
e2

z
sin k1l1 � #G1k1l1cos k1l1

� �
cos kAl2 þ CAkAl1sin k1l1sin kAl2 ¼ 0 ð40Þ

is the characteristic equation representing the resonance of the symmetric torsional BLT.
If the elastic blocks A and B do not exist, Eq. (40) becomes the same as Eq. (20). This

degradation is consistent with the statement discussed for the double–disk transducer in the
previous section.

The piezoelectric natural frequencies of the symmetric torsional BLT are calculated from
Eq. (40). The piezoelectric disk is the same as those mentioned in the previous sections, and the
material properties and thickness are the same as those used earlier. The elastic blocks are made of
aluminum alloy (2014-T6) and the material properties [14] are listed in Table 6. The natural
frequencies have been calculated and listed in Tables 5 and 7 according to the procedure of
numerical calculation described in Section 3.2

Table 5 compares the natural frequencies of the double–disk transducer and the Langevin-type
transducer including the double disks. It appears that the piezoelectric natural frequencies of the
BLT are about 15–20% of those of the double–disk transducer due to the elastic blocks which are
7.5 times thicker than the disk. Table 7 compares the calculated frequencies with the measured ones.

Usually, the natural frequency of piezoelectric disks is higher than desired. Increasing the disk
thickness to reduce the natural frequency results in the loss of the electromechanical efficiency.
Thus, attaching the elastic blocks is the best way to reduce the natural frequency of the
piezoelectric transducer. The thickness of the elastic block can be selected to make the desired
natural frequency by the analysis shown in this section.

The mode shapes corresponding to the natural frequencies are calculated from Eqs. (36) and
(39), and displayed in Fig. 11. The shape of the one-half is the duplication of the calculated results
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Table 6

Elastic properties of aluminum alloy (2014-T6) and stainless steel (STS-302)

Properties Values

2014-T6 Mass density, r 2800 kg/m3

Shear modules, G 28 GPa

STS-302 Mass density, r 7920 kg/m3

Shear modules, G 75 GPa

Table 7

Comparison of the calculated and measured natural frequencies of a symmetric Langevin-type transducer

Mode Natural frequency (kHz) Difference (%)

Calculated Measured

1 22.4 19.8 13

2 65.7 58.2 13

3 107 90.7 18

4 148 161 –8
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for the other half so that the mode shape becomes antisymmetric. The dotted lines represent the
interface between the piezoelectric layers and the elastic blocks.

5.2. Analysis and numerical results for asymmetric BLT’s

Two elastic blocks in a BLT are in general not identical, and the transducer is asymmetric, as
shown in Fig. 1. The asymmetric BLT consists of piezoelectric disks 1 and 2 of thickness l1, as
shown in Fig. 9, and elastic blocks A and B of thickness l2 and l3, respectively, as shown in Fig. 12.
Based on the discussion in Section 4.2, the piezoelectric disks 1 and 2 are considered as a single
piezoelectric disk of thickness 2l1 to simplify the analysis.

When the piezoelectric disk is derived by the voltage 2V0e jot; the boundary and interface
conditions are established as follows:

*u1 ¼ *uA; *t1 ¼ *tA; *f1 ¼ 2V0 at z ¼ l1; ð41a;b; cÞ

*u1 ¼ *uB; *t1 ¼ *tB; *f1 ¼ 0 at z ¼ �l1; ð41d; e; fÞ

*tA ¼ 0 at z ¼ l1 þ l2; ð41gÞ

*tB ¼ 0 at z ¼ �ðl1 þ l3Þ: ð41hÞ
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Fig. 11. Mode shapes of the symmetric Langevin-type transducer: (a) first mode (22.4 kHz), (b) second mode

(65.7 kHz).

Fig. 12. Schematic diagram of the asymmetric Langevin-type transducer.
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Using the governing equations from Section 5.1 and applying the boundary conditions
(41a)–(41 h) yields the solutions for the asymmetric torsional BLT as follows:

*u1ðzÞ ¼ A1cos k1z þ B1sin k1z; ð42Þ

A1 ¼ �
eV0

D4
GAkAl1sin kAl2cos kBl3 � GBkBl1cos kAl2sin kBl3½ �sin k1l1;

B1 ¼
eV0

D4
2 #G1k1l1sin k1l1cos kAl2cos kBl3
	

þGAkAl1cos k1l1sin kAl2cos kBl3 þ GBkBl1cos k1l1cos kAl2sin kBl3�;

*f1ðzÞ ¼
e
z
*u1ðzÞ þ az þ b; ð43Þ

a ¼ �
1

l1

e
z

sin k1l1B1 � V0

� �
;

b ¼ �
e
z

cos k1l1A1 � sin k1l1B1ð Þ þ l1a;

*uAðzÞ ¼ A2 cos kAz þ B2 sin kAz; ð44Þ

A2 ¼
2eV0

D4

#G1k1l1sin k1l1cos kBl3 þ GBkBl1cos k1l1sin kBl3

 �

sin k1l1cos kA l1 þ l2ð Þ;

B3 ¼
2eV0

D4

#G1k1l1sin k1l1cos kBl3 þ GBkBl1cos k1l1sin kBl3

 �

sin k1l1sin kA l1 þ l2ð Þ;

*uBðzÞ ¼ A3 cos kBz þ B3 sin kBz; ð45Þ

A3 ¼ �
2eV0

D4

#G1k1l1sin k1l1cos kAl2 þ GAkAl1cos k1l1sin kAl2

 �

sin k1l1cos kB l1 þ l3ð Þ;

B3 ¼ �
2eV0

D4

#G1k1l1sin k1l1cos kAl2 þ GAkAl1cos k1l1sin kAl2

 �

sin k1l1sin kB l1 þ l3ð Þ;

where

D4 � #G1k1l1sin k1l1cos kAl2 þ GAkAl1cos k1l1sin kAl2
	 �

	
e2

z
sin k1l1 � #G1k1l1cos k1l1

� �
cos kBl3 þ GBkBl1sin k1l1sin kBl3

� �

þ #G1k1l1sin k1l1cos kBl3 þ GBkBl1cos k1l1sin kBl3
	 �

	
e2

z
sin k1l1 � #G1k1l1cos k1l1

� �
cos kAl2 þ GAkAl1sin k1l1sin kAl2

� �

¼ 0 ð46Þ

is the characteristic equation representing the resonance of the asymmetric torsional BLT. If
GA ¼ GB; kA ¼ kB; and l2 ¼ l3; then Eqs. (42)–(46) become Eqs. (36)–(40), which are the solutions
for the symmetric BLT.
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With the same material properties mentioned in Section 5.1 except that the thickness of the
elastic block A is 60 mm, the piezoelectric natural frequencies of the asymmetric BLT have been
calculated from Eq. (46). The calculated frequencies are listed in Table 8 and will be compared
with the measured ones in the next section. The mode shapes corresponding to the natural
frequencies are calculated from Eqs. (42), (44), and (45) and displayed in Fig. 13.

On the other hand, an asymmetric BLT with the elastic blocks of the same size, 30 mm
thickness, but different materials, for example stainless steel (STS-302) for A and aluminum alloy
(2014-T6) for B, can also be considered. The material properties of stainless steel [15] together
with the properties of aluminium alloy are listed in Table 6. The natural frequencies and mode
shapes are calculated and shown in Fig. 14.

Figs. 13(a) and 14(a) represent the 1st mode and show the shapes similar to the antisymmetric
mode of Fig. 11(a) even though the location of the nodal point is not symmetric. Figs. 13(b) and
14(b) represent the 2nd mode and show the shapes corresponding to the symmetric mode which
does not appear in a symmetric transducer, but the location of the nodal point is of course not
symmetric. As shown in Figs. 13 and 14, the asymmetric BLT possesses both antisymmetric and
symmetric modes and asymmetric nodal position.
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Table 8

Comparison of the calculated and measured natural frequencies of an asymmetric Langevin-type transducer

Mode Natural frequency (kHz) Difference (%)

Calculated Measured

1 15.4 13.7 12

2 30.3 27.7 9

3 44.1 40.9 8

4 61.8 56.0 10

Fig. 13. Mode shapes of the asymmetric Langevin-type transducer with different block size: (a) first mode (15.4 kHz),

(b) second mode (30.3 kHz).
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5.3. Experiments

In order to verify the analysis for the vibration of the Langevin-type torsional transducers,
the piezoelectric natural frequencies are measured for comparison with the calculated ones. The
transducers used for the experiment are the symmetric BLT shown in Fig. 10(a) and the
asymmetric one in Fig. 1(a).

The piezoelectric natural frequencies of the BLT are measured by the procedure described in
Section 3.3 The measured impedance curves are shown in Fig. 15(a) and (b). The measured
natural frequencies, which is the location of the local minimum in the impedance curve, are listed
in Tables 7 and 8, and compared with the calculated ones. The 10% difference between the
measured and calculated values seems due to the factors insufficiently considered in the analysis
model. Such factors include the steel bolt clamping the elastic blocks and the flat cut of one
portion of the elastic blocks. If the error due to the difference of the models is accepted, the
analysis results are reasonable.

6. Conclusion

The vibrational characteristics of piezoelectric torsional transducers of single-disk and double-
disk and Langevin-type piezoelectric torsional transducers were studied by deriving the
characteristic equations and vibration modes. The piezoelectric natural frequencies of the
transducers were calculated from the theoretical solutions and then compared with measured
values. The comparison verifies that the theoretical results are reasonable.

The analysis for the single-disk transducer shows that the piezoelectric resonance of the free–
free boundary conditions does not have symmetric modes but has antisymmetric modes. A fixed–
free transducer of half-thickness has the same piezoelectric resonance of a free–free transducer.
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Fig. 14. Mode shapes of the asymmetric Langevin-type transducer with different block material: (a) first mode

(20.7 kHz), (b) second mode (43.3 kHz).
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A symmetric transducer with two identical elastic blocks has symmetric modes only and the
analysis can be carried out for the symmetric half of the transducer. General cases of asymmetric
transducers were considered for the transducer with two elastic blocks of the same material but
different size and for the transducer with two elastic blocks of the same size but different
materials. The asymmetric transducers have mode shapes corresponding to the symmetric and
antisymmetric modes.

The theoretically derived characteristic equations enable one to quantitatively predict the effect
of the elastic blocks on the reduction of the natural frequencies of a Langevin-type torsional
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Fig. 15. Impedance curves of Langevin-type transducers, measured as a function of the frequency: (a) symmetric

transducer, (b) asymmetric transducer.
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transducer. The results establish the design base of the transducer with desired natural frequencies
by adequately selecting the size of the elastic blocks of the transducer.

Acknowledgements

This work was supported by ISTEC Co., Ltd. with a grant from the Korean Ministry of
Commerce, Industry and Energy.

References

[1] T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, Oxford, 1996.

[2] K. Uchino, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publisher, Boston, 1997.

[3] T. Sashida, T. Kenjo, An Introduction to Ultrasonic Motors, Oxford University Press, Oxford, 1993.

[4] J.O. Kim, Y. Wang, H.H. Bau, The effect of an adjacent viscous fluid on the transmission of torsional stress waves

in a submerged waveguide, Journal of the Acoustical Society of America 89 (3) (1991) 1414–1422.

[5] J.O. Kim, Torsional wave propagation in a circular cylinder with a periodically corrugated outer surface,

American Society of Mechanical Engineers, Journal of Vibration and Acoustics 121 (4) (1999) 501–505.

[6] S. Mishiro, Torsional vibration apparatus, United States Patent 4,652,786, 1987.

[7] S. Mishiro, Torsion vibrator, United States Patent 4,787,265, 1988.

[8] S. Nemoto, E. Mori, Bolt-clamped electrostrictive torsional vibrator (in Japanese), Journal of the Acoustical

Society of Japan 28 (3) (1972) 117–126.

[9] S. Lin, Study of the sandwiched piezoelectric ultrasonic torsional transducer, Ultrasonics 32 (6) (1994) 461–465.

[10] D.K. Miu, Mechatronics: Electromechanics and Contromechanics, Springer, New York, 1993 (Chapter 6).

[11] D.A. Berlincourt, C. Cmolik, H. Jaffe, Piezoelectric properties of polycrystalline lead titanate zirconate

compositions, Proceedings of the IRE, 1960, pp. 220–229.

[12] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison-Wesley, New York, 1988.

[13] P. Lu, K.H. Lee, W.Z. Lin, F. Shen, S.P. Lim, An approximate frequency formula for piezoelectric circular

cylindrical shells, Journal of Sound and Vibration 242 (2001) 309–320.

[14] J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 3rd Edition, PWS, Warsaw, 1990, pp. 777–782.

[15] F.P. Beer, E.R. Johnston, Mechanics of Materials, 2nd Edition in SI Units, Appendix B, McGraw-Hill, New York,

1992.

ARTICLE IN PRESS

J.O. Kim, O.S. Kwon / Journal of Sound and Vibration 264 (2003) 453–473 473


	Vibration characteristics of piezoelectric torsional transducers
	Introduction
	Formulation of the electromechanical problem
	Vibration of single-disk transducers
	Analysis
	Numerical results
	Experiments

	Vibration of double-disk transducers
	Analysis
	Numerical results

	Vibration of the Langevin-type torsional transducers
	Analysis and numerical results for symmetric BLT’s
	Analysis and numerical results for asymmetric BLT’s
	Experiments

	Conclusion
	Acknowledgements
	References


